Skip to content

gui

DetectorGUI #

Source code in cogip/tools/detector/gui.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
class DetectorGUI:
    def __init__(self, detector: "Detector"):
        """
        Initialize the GUI for the detector.

        Args:
            detector: Reference to the Detector instance for accessing shared data.
        """
        self.detector = detector

        # Initialize plot and data containers
        self.fig, self.ax = plt.subplots(figsize=(10, 10))

        # Set figure and axes background color
        self.fig.patch.set_facecolor("#2E2E2E")
        self.ax.set_facecolor("#1E1E1E")

        # Set labels and title with light colors
        self.ax.set_xlabel("Y (mm)", color="#CCCCCC")
        self.ax.set_ylabel("X (mm)", color="#CCCCCC")
        self.ax.set_title("Real-time Obstacle Detection", color="#FFFFFF", fontweight="bold")

        # Customize grid
        self.ax.grid(True, color="#555555", linestyle="-", linewidth=0.5, alpha=0.7)

        # Customize axis appearance
        self.ax.spines["bottom"].set_color("#555555")
        self.ax.spines["top"].set_color("#555555")
        self.ax.spines["left"].set_color("#555555")
        self.ax.spines["right"].set_color("#555555")

        # Customize tick parameters
        self.ax.tick_params(axis="both", colors="#CCCCCC")

        # Invert x-axis and set equal aspect ratio
        self.ax.invert_xaxis()
        self.ax.axis("equal")

        # Configure legend with dark theme colors
        self.ax.legend(facecolor="#333333", edgecolor="#555555", labelcolor="#CCCCCC")

        # Set initial view range
        view_radius = self.detector.properties.max_distance * 1.2
        self.ax.set_xlim((view_radius, -view_radius))
        self.ax.set_ylim((-view_radius, view_radius))

        # Connect the scroll event to the handler
        self.fig.canvas.mpl_connect("scroll_event", self.on_scroll)

        # Visualization elements
        self.points_scatter = self.ax.scatter([], [], c="gray", s=5, label="Detected Points")
        self.cluster_scatters: list[PathCollection] = []
        self.obstacle_circles: list[Ellipse] = []

        # Robot and Lidar markers
        self.robot_marker = self.ax.scatter(
            0,
            0,
            c="red",
            s=100,
            marker="*",
            label="Robot",
        )

        # Calculate Lidar position
        self.lidar_marker = self.ax.scatter(
            self.detector.LIDAR_OFFSET_Y,
            self.detector.LIDAR_OFFSET_X,
            c="blue",
            s=80,
            marker="o",
            label="Lidar",
        )

        # Animation setup
        self.animation: FuncAnimation | None = None

    def start_animation(self):
        """Starts the real-time visualization."""
        plt.rcParams["axes.prop_cycle"] = plt.cycler(color=plt.cm.plasma(np.linspace(0, 1, 10)))

        self.animation = FuncAnimation(
            self.fig,
            self.update_plot,
            interval=200,
            blit=False,
            cache_frame_data=False,
        )

    def update_robot_pose(self):
        """Update robot pose on the GUI."""
        if not self.detector.shared_pose_current_buffer:
            return

        pose_current = self.detector.shared_pose_current_buffer.last
        x = pose_current.x
        y = pose_current.y
        angle = pose_current.angle

        self.robot_marker.set_offsets([y, x])

        angle_rad = np.radians(-angle)
        lidar_offset_rotated = np.array(
            [
                self.detector.LIDAR_OFFSET_Y * np.cos(angle_rad) - self.detector.LIDAR_OFFSET_X * np.sin(angle_rad),
                self.detector.LIDAR_OFFSET_Y * np.sin(angle_rad) + self.detector.LIDAR_OFFSET_X * np.cos(angle_rad),
            ]
        )
        lidar_x = x + lidar_offset_rotated[1]
        lidar_y = y + lidar_offset_rotated[0]
        self.lidar_marker.set_offsets([lidar_y, lidar_x])

    def update_plot(self, frame):
        """Updates the visualization with current data."""
        self.update_robot_pose()

        if self.detector.shared_lidar_coords is None:
            return

        lidar_coords = self.detector.shared_lidar_coords[
            : np.argmax(self.detector.shared_lidar_coords[:, 0] == -1)
        ].copy()
        self.points_scatter.set_offsets(np.column_stack((lidar_coords[:, 1], lidar_coords[:, 0])))

        for scatter in self.cluster_scatters:
            scatter.remove()
        self.cluster_scatters = []

        for circle in self.obstacle_circles:
            circle.remove()
        self.obstacle_circles = []

        colors = plt.cm.plasma(np.linspace(0, 1, len(self.detector.clusters) + 1))

        for i, cluster in enumerate(self.detector.clusters):
            scatter = self.ax.scatter(
                cluster[:, 1],
                cluster[:, 0],
                c=[colors[i]],
                s=20,
            )
            self.cluster_scatters.append(scatter)

        for i, obstacle in enumerate(self.detector.shared_detector_obstacles):
            center_x = obstacle.x
            center_y = obstacle.y
            radius = obstacle.radius
            circle = Ellipse(
                (center_y, center_x),
                width=radius * 2,
                height=radius * 2,
                fill=False,
                edgecolor=colors[i],
                linewidth=2,
                alpha=0.8,
            )
            self.ax.add_patch(circle)
            self.obstacle_circles.append(circle)

        self.fig.canvas.draw_idle()
        self.fig.canvas.flush_events()

    def on_scroll(self, event: MouseEvent):
        """Handle scroll events for zooming."""
        if event.inaxes != self.ax:
            return

        xlim = self.ax.get_xlim()
        ylim = self.ax.get_ylim()

        x_data, y_data = event.xdata, event.ydata
        zoom_factor = 1.1 if event.button == "down" else 0.9

        x_left = x_data - zoom_factor * (x_data - xlim[0])
        x_right = x_data + zoom_factor * (xlim[1] - x_data)
        y_bottom = y_data - zoom_factor * (y_data - ylim[0])
        y_top = y_data + zoom_factor * (ylim[1] - y_data)

        view_radius = self.detector.properties.max_distance * 1.2
        x_left = max(-view_radius, x_left)
        x_right = min(view_radius, x_right)
        y_bottom = max(-view_radius, y_bottom)
        y_top = min(view_radius, y_top)

        self.ax.set_xlim(x_left, x_right)
        self.ax.set_ylim(y_bottom, y_top)

        plt.draw()

__init__(detector) #

Initialize the GUI for the detector.

Parameters:

Name Type Description Default
detector Detector

Reference to the Detector instance for accessing shared data.

required
Source code in cogip/tools/detector/gui.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def __init__(self, detector: "Detector"):
    """
    Initialize the GUI for the detector.

    Args:
        detector: Reference to the Detector instance for accessing shared data.
    """
    self.detector = detector

    # Initialize plot and data containers
    self.fig, self.ax = plt.subplots(figsize=(10, 10))

    # Set figure and axes background color
    self.fig.patch.set_facecolor("#2E2E2E")
    self.ax.set_facecolor("#1E1E1E")

    # Set labels and title with light colors
    self.ax.set_xlabel("Y (mm)", color="#CCCCCC")
    self.ax.set_ylabel("X (mm)", color="#CCCCCC")
    self.ax.set_title("Real-time Obstacle Detection", color="#FFFFFF", fontweight="bold")

    # Customize grid
    self.ax.grid(True, color="#555555", linestyle="-", linewidth=0.5, alpha=0.7)

    # Customize axis appearance
    self.ax.spines["bottom"].set_color("#555555")
    self.ax.spines["top"].set_color("#555555")
    self.ax.spines["left"].set_color("#555555")
    self.ax.spines["right"].set_color("#555555")

    # Customize tick parameters
    self.ax.tick_params(axis="both", colors="#CCCCCC")

    # Invert x-axis and set equal aspect ratio
    self.ax.invert_xaxis()
    self.ax.axis("equal")

    # Configure legend with dark theme colors
    self.ax.legend(facecolor="#333333", edgecolor="#555555", labelcolor="#CCCCCC")

    # Set initial view range
    view_radius = self.detector.properties.max_distance * 1.2
    self.ax.set_xlim((view_radius, -view_radius))
    self.ax.set_ylim((-view_radius, view_radius))

    # Connect the scroll event to the handler
    self.fig.canvas.mpl_connect("scroll_event", self.on_scroll)

    # Visualization elements
    self.points_scatter = self.ax.scatter([], [], c="gray", s=5, label="Detected Points")
    self.cluster_scatters: list[PathCollection] = []
    self.obstacle_circles: list[Ellipse] = []

    # Robot and Lidar markers
    self.robot_marker = self.ax.scatter(
        0,
        0,
        c="red",
        s=100,
        marker="*",
        label="Robot",
    )

    # Calculate Lidar position
    self.lidar_marker = self.ax.scatter(
        self.detector.LIDAR_OFFSET_Y,
        self.detector.LIDAR_OFFSET_X,
        c="blue",
        s=80,
        marker="o",
        label="Lidar",
    )

    # Animation setup
    self.animation: FuncAnimation | None = None

on_scroll(event) #

Handle scroll events for zooming.

Source code in cogip/tools/detector/gui.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def on_scroll(self, event: MouseEvent):
    """Handle scroll events for zooming."""
    if event.inaxes != self.ax:
        return

    xlim = self.ax.get_xlim()
    ylim = self.ax.get_ylim()

    x_data, y_data = event.xdata, event.ydata
    zoom_factor = 1.1 if event.button == "down" else 0.9

    x_left = x_data - zoom_factor * (x_data - xlim[0])
    x_right = x_data + zoom_factor * (xlim[1] - x_data)
    y_bottom = y_data - zoom_factor * (y_data - ylim[0])
    y_top = y_data + zoom_factor * (ylim[1] - y_data)

    view_radius = self.detector.properties.max_distance * 1.2
    x_left = max(-view_radius, x_left)
    x_right = min(view_radius, x_right)
    y_bottom = max(-view_radius, y_bottom)
    y_top = min(view_radius, y_top)

    self.ax.set_xlim(x_left, x_right)
    self.ax.set_ylim(y_bottom, y_top)

    plt.draw()

start_animation() #

Starts the real-time visualization.

Source code in cogip/tools/detector/gui.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def start_animation(self):
    """Starts the real-time visualization."""
    plt.rcParams["axes.prop_cycle"] = plt.cycler(color=plt.cm.plasma(np.linspace(0, 1, 10)))

    self.animation = FuncAnimation(
        self.fig,
        self.update_plot,
        interval=200,
        blit=False,
        cache_frame_data=False,
    )

update_plot(frame) #

Updates the visualization with current data.

Source code in cogip/tools/detector/gui.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def update_plot(self, frame):
    """Updates the visualization with current data."""
    self.update_robot_pose()

    if self.detector.shared_lidar_coords is None:
        return

    lidar_coords = self.detector.shared_lidar_coords[
        : np.argmax(self.detector.shared_lidar_coords[:, 0] == -1)
    ].copy()
    self.points_scatter.set_offsets(np.column_stack((lidar_coords[:, 1], lidar_coords[:, 0])))

    for scatter in self.cluster_scatters:
        scatter.remove()
    self.cluster_scatters = []

    for circle in self.obstacle_circles:
        circle.remove()
    self.obstacle_circles = []

    colors = plt.cm.plasma(np.linspace(0, 1, len(self.detector.clusters) + 1))

    for i, cluster in enumerate(self.detector.clusters):
        scatter = self.ax.scatter(
            cluster[:, 1],
            cluster[:, 0],
            c=[colors[i]],
            s=20,
        )
        self.cluster_scatters.append(scatter)

    for i, obstacle in enumerate(self.detector.shared_detector_obstacles):
        center_x = obstacle.x
        center_y = obstacle.y
        radius = obstacle.radius
        circle = Ellipse(
            (center_y, center_x),
            width=radius * 2,
            height=radius * 2,
            fill=False,
            edgecolor=colors[i],
            linewidth=2,
            alpha=0.8,
        )
        self.ax.add_patch(circle)
        self.obstacle_circles.append(circle)

    self.fig.canvas.draw_idle()
    self.fig.canvas.flush_events()

update_robot_pose() #

Update robot pose on the GUI.

Source code in cogip/tools/detector/gui.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def update_robot_pose(self):
    """Update robot pose on the GUI."""
    if not self.detector.shared_pose_current_buffer:
        return

    pose_current = self.detector.shared_pose_current_buffer.last
    x = pose_current.x
    y = pose_current.y
    angle = pose_current.angle

    self.robot_marker.set_offsets([y, x])

    angle_rad = np.radians(-angle)
    lidar_offset_rotated = np.array(
        [
            self.detector.LIDAR_OFFSET_Y * np.cos(angle_rad) - self.detector.LIDAR_OFFSET_X * np.sin(angle_rad),
            self.detector.LIDAR_OFFSET_Y * np.sin(angle_rad) + self.detector.LIDAR_OFFSET_X * np.cos(angle_rad),
        ]
    )
    lidar_x = x + lidar_offset_rotated[1]
    lidar_y = y + lidar_offset_rotated[0]
    self.lidar_marker.set_offsets([lidar_y, lidar_x])