38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361 | class CameraServer:
"""
Camera web server.
Handle FastAPI server to stream camera video and SocketIO client to send detected samples to server.
"""
_exiting: bool = False # True if Uvicorn server was ask to shutdown
_original_uvicorn_exit_handler = UvicornServer.handle_exit
def __init__(self):
"""
Class constructor.
Create FastAPI application and SocketIO client.
"""
self.settings = Settings()
CameraServer._exiting = False
self.frame_queue: Queue | None = None
self.stream_queue: Queue | None = None
self.last_frame: bytes | None = None
self.last_stream_frame: bytes | None = None
self.app = FastAPI(title="COGIP Robot Camera Streamer", lifespan=self.lifespan, debug=False)
self.register_endpoints()
UvicornServer.handle_exit = self.handle_exit
self.records_dir = Path.home() / "records"
self.records_dir.mkdir(exist_ok=True)
# Keep only 100 last records
for old_record in sorted(self.records_dir.glob("*.jpg"))[:-100]:
old_record.unlink()
if self.settings.camera_name == CameraName.rpicam.name:
CameraClass = RPiCamera
elif self.settings.camera_name == CameraName.simcam.name:
CameraClass = SimCamera
else:
CameraClass = USBCamera
self.camera = CameraClass(
self.settings.id,
CameraName[self.settings.camera_name],
VideoCodec[self.settings.camera_codec],
self.settings.camera_width,
self.settings.camera_height,
self.settings.stream_width,
self.settings.stream_height,
)
# Load camera intrinsic parameters
self.camera_matrix: cv2.typing.MatLike | None = None
self.dist_coefs: cv2.typing.MatLike | None = None
if not self.camera.intrinsic_params_filename.exists():
logger.warning(f"Camera intrinsic parameters file not found: {self.camera.intrinsic_params_filename}")
else:
self.camera_matrix, self.dist_coefs = load_camera_intrinsic_params(self.camera.intrinsic_params_filename)
# Load camera extrinsic parameters
self.extrinsic_params: CameraExtrinsicParameters | None = None
if not self.camera.extrinsic_params_filename.exists():
logger.warning(f"Camera extrinsic parameters file not found: {self.camera.extrinsic_params_filename}")
else:
self.extrinsic_params = load_camera_extrinsic_params(self.camera.extrinsic_params_filename)
aruco_dict = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_4X4_100)
parameters = cv2.aruco.DetectorParameters()
# Speed optimizations
# Use a single window size for adaptive thresholding to avoid multiple passes
parameters.adaptiveThreshWinSizeMin = 13
parameters.adaptiveThreshWinSizeMax = 13
parameters.adaptiveThreshWinSizeStep = 1
# Reduce accuracy of polygonal approximation (faster contour processing)
parameters.polygonalApproxAccuracyRate = 0.05 # Default 0.03
# Disable corner refinement if not strictly necessary (SUBPIX is slow)
parameters.cornerRefinementMethod = cv2.aruco.CORNER_REFINE_NONE
self.detector = cv2.aruco.ArucoDetector(aruco_dict, parameters)
def set_queues(self, frame_queue: Queue, stream_queue: Queue):
self.frame_queue = frame_queue
self.stream_queue = stream_queue
# Start consumer thread
self.consumer_thread = Thread(target=self.consume_queues, daemon=True)
self.consumer_thread.start()
def consume_queues(self):
while not self._exiting:
try:
if self.frame_queue and not self.frame_queue.empty():
try:
self.last_frame = self.frame_queue.get_nowait()
except Empty:
pass
if self.stream_queue and not self.stream_queue.empty():
try:
self.last_stream_frame = self.stream_queue.get_nowait()
except Empty:
pass
time.sleep(0.01)
except Exception:
pass
@asynccontextmanager
async def lifespan(self, app: FastAPI):
"""
Handle application startup and shutdown events.
"""
logger.info("Robotcam server starting up...")
try:
systemd.daemon.notify("READY=1")
logger.info("Systemd notified: READY=1")
except Exception as e:
logger.error(f"Failed to notify systemd: {e}")
yield
logger.info("Robotcam server shutting down...")
CameraServer._exiting = True
if self.consumer_thread:
self.consumer_thread.join()
@staticmethod
def handle_exit(*args, **kwargs):
"""Overload function for Uvicorn handle_exit"""
CameraServer._exiting = True
CameraServer._original_uvicorn_exit_handler(*args, **kwargs)
async def camera_streamer(self):
"""
Frame generator.
Yield frames produced by [camera_handler][cogip.tools.robotcam.camera.CameraHandler.camera_handler].
"""
while not self._exiting:
if self.last_stream_frame:
yield b"--frame\r\n"
yield b"Content-Type: image/jpeg\r\n\r\n"
yield self.last_stream_frame
yield b"\r\n"
await asyncio.sleep(0.1)
def register_endpoints(self) -> None:
@self.app.get("/")
def index():
"""
Camera stream.
"""
stream = self.camera_streamer() if self.last_stream_frame else ""
return StreamingResponse(stream, media_type="multipart/x-mixed-replace;boundary=frame")
@self.app.get("/detect", status_code=200)
def detect() -> list[dict]:
start_time = time.time()
if self.last_frame is None:
raise HTTPException(status_code=503, detail="Camera not ready")
jpg_as_np = np.frombuffer(self.last_frame, dtype=np.uint8)
frame = cv2.imdecode(jpg_as_np, flags=cv2.IMREAD_UNCHANGED)
if len(frame.shape) == 2:
dst = frame
else:
dst = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect marker corners
marker_corners, marker_ids, _ = self.detector.detectMarkers(dst)
results = []
if marker_ids is not None:
for id, corners in zip(marker_ids, marker_corners):
results.append({"id": int(id[0]), "corners": corners[0].tolist()})
duration = time.time() - start_time
logger.info(f"Detect endpoint took {duration:.3f}s")
return results
@self.app.get("/snapshot", status_code=200)
def snapshot():
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
basename = f"robot{self.settings.id}-{timestamp}-snapshot"
if self.last_frame is None:
raise HTTPException(status_code=503, detail="Camera not ready")
jpg_as_np = np.frombuffer(self.last_frame, dtype=np.uint8)
frame = cv2.imdecode(jpg_as_np, flags=1)
record_filename = self.records_dir / f"{basename}.jpg"
cv2.imwrite(str(record_filename), frame)
@self.app.get("/camera_calibration", status_code=200)
def camera_calibration(x: float, y: float, angle: float) -> CameraExtrinsicParameters:
if self.last_frame is None:
raise HTTPException(status_code=503, detail="Camera not ready")
jpg_as_np = np.frombuffer(self.last_frame, dtype=np.uint8)
frame = cv2.imdecode(jpg_as_np, flags=cv2.IMREAD_UNCHANGED)
if len(frame.shape) == 2:
dst = frame
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
else:
dst = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect marker corners
marker_corners, marker_ids, _ = self.detector.detectMarkers(dst)
# Draw detected markers
cv2.aruco.drawDetectedMarkers(frame, marker_corners, marker_ids)
# Record image
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
basename = f"robot{self.settings.id}-{timestamp}-calibration"
record_filename = self.records_dir / f"{basename}.jpg"
cv2.imwrite(str(record_filename), frame)
if marker_ids is None:
raise HTTPException(status_code=404, detail="No marker found")
robot_pose = Pose(x=x, y=y, O=angle)
# Keep table markers only
table_markers = {
id[0]: corners for id, corners in zip(marker_ids, marker_corners) if id[0] in [20, 21, 22, 23]
}
if len(table_markers) == 0:
raise HTTPException(status_code=404, detail="No table marker found")
# Compute camera position on table
table_camera_tvec, table_camera_rvec_degrees = get_camera_position_on_table(
table_markers,
self.camera_matrix,
self.dist_coefs,
)
# Compute camera position in robot if robot position is given
camera_position = get_camera_position_in_robot(
robot_pose,
table_camera_tvec,
table_camera_rvec_degrees,
)
return camera_position
@self.app.get("/robot_position", status_code=200)
def robot_position() -> Pose:
if self.last_frame is None:
raise HTTPException(status_code=503, detail="Camera not ready")
jpg_as_np = np.frombuffer(self.last_frame, dtype=np.uint8)
frame = cv2.imdecode(jpg_as_np, flags=cv2.IMREAD_UNCHANGED)
if len(frame.shape) == 2:
dst = frame
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
else:
dst = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect marker corners
marker_corners, marker_ids, _ = self.detector.detectMarkers(dst)
# Draw detected markers
cv2.aruco.drawDetectedMarkers(frame, marker_corners, marker_ids)
# Record image
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
basename = f"robot{self.settings.id}-{timestamp}-position"
record_filename = self.records_dir / f"{basename}.jpg"
cv2.imwrite(str(record_filename), frame)
if marker_ids is None:
raise HTTPException(status_code=404, detail="No marker found")
# Keep table markers only
table_markers = {
id[0]: corners for id, corners in zip(marker_ids, marker_corners) if id[0] in [20, 21, 22, 23]
}
if len(table_markers) == 0:
raise HTTPException(status_code=404, detail="No table marker found")
if self.camera_matrix is None or self.dist_coefs is None:
raise HTTPException(status_code=503, detail="Camera intrinsic parameters not loaded")
# Compute camera position on table
camera_tvec, camera_rvec_degrees = get_camera_position_on_table(
table_markers,
self.camera_matrix,
self.dist_coefs,
)
# Compute robot position on table
# 1. Camera in Table frame (Transformation T_ct)
# Reconstruct rotation matrix from Euler angles (applying R_flip to match convention)
R_ct_flipped = euler_angles_to_rotation_matrix(np.deg2rad(camera_rvec_degrees))
R_ct = R_flip @ R_ct_flipped
M_ct = make_transform_matrix(R_ct, camera_tvec)
# 2. Camera in Robot frame (Transformation T_cr)
M_cr = extrinsic_params_to_matrix(self.extrinsic_params)
# 3. Robot in Table frame (Transformation T_rt)
# M_rt = M_ct * M_cr^(-1)
M_rt = M_ct @ np.linalg.inv(M_cr)
# Extract results
R_rt, T_rt = decompose_transform_matrix(M_rt)
robot_angle_degrees = np.rad2deg(np.arctan2(R_rt[1, 0], R_rt[0, 0]))
logger.info(
f"Robot position: X={T_rt[0]:.0f} Y={T_rt[1]:.0f} Z={T_rt[2]:.0f} Angle={robot_angle_degrees:.0f}"
)
return Pose(x=T_rt[0], y=T_rt[1], z=T_rt[2], O=robot_angle_degrees)
|